3.109 \(\int \sec ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx\)

Optimal. Leaf size=116 \[ \frac {64 a^3 \tan (c+d x)}{21 d \sqrt {a \sec (c+d x)+a}}+\frac {16 a^2 \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{21 d}+\frac {2 a \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{7 d}+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d} \]

[Out]

2/7*a*(a+a*sec(d*x+c))^(3/2)*tan(d*x+c)/d+2/7*(a+a*sec(d*x+c))^(5/2)*tan(d*x+c)/d+64/21*a^3*tan(d*x+c)/d/(a+a*
sec(d*x+c))^(1/2)+16/21*a^2*(a+a*sec(d*x+c))^(1/2)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3798, 3793, 3792} \[ \frac {64 a^3 \tan (c+d x)}{21 d \sqrt {a \sec (c+d x)+a}}+\frac {16 a^2 \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{21 d}+\frac {2 a \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{7 d}+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(64*a^3*Tan[c + d*x])/(21*d*Sqrt[a + a*Sec[c + d*x]]) + (16*a^2*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(21*d)
+ (2*a*(a + a*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(7*d) + (2*(a + a*Sec[c + d*x])^(5/2)*Tan[c + d*x])/(7*d)

Rule 3792

Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*b*Cot[e + f*x])/
(f*Sqrt[a + b*Csc[e + f*x]]), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3793

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b*Cot[e + f*x]*(a
 + b*Csc[e + f*x])^(m - 1))/(f*m), x] + Dist[(a*(2*m - 1))/m, Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1), x
], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] && IntegerQ[2*m]

Rule 3798

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(Cot[e + f*x]*(a
 + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*m)/(b*(m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x
] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \sec ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx &=\frac {2 (a+a \sec (c+d x))^{5/2} \tan (c+d x)}{7 d}+\frac {5}{7} \int \sec (c+d x) (a+a \sec (c+d x))^{5/2} \, dx\\ &=\frac {2 a (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{7 d}+\frac {2 (a+a \sec (c+d x))^{5/2} \tan (c+d x)}{7 d}+\frac {1}{7} (8 a) \int \sec (c+d x) (a+a \sec (c+d x))^{3/2} \, dx\\ &=\frac {16 a^2 \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{21 d}+\frac {2 a (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{7 d}+\frac {2 (a+a \sec (c+d x))^{5/2} \tan (c+d x)}{7 d}+\frac {1}{21} \left (32 a^2\right ) \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {64 a^3 \tan (c+d x)}{21 d \sqrt {a+a \sec (c+d x)}}+\frac {16 a^2 \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{21 d}+\frac {2 a (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{7 d}+\frac {2 (a+a \sec (c+d x))^{5/2} \tan (c+d x)}{7 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.18, size = 60, normalized size = 0.52 \[ \frac {2 a^3 \tan (c+d x) \left (3 \sec ^3(c+d x)+12 \sec ^2(c+d x)+23 \sec (c+d x)+46\right )}{21 d \sqrt {a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(2*a^3*(46 + 23*Sec[c + d*x] + 12*Sec[c + d*x]^2 + 3*Sec[c + d*x]^3)*Tan[c + d*x])/(21*d*Sqrt[a*(1 + Sec[c + d
*x])])

________________________________________________________________________________________

fricas [A]  time = 0.67, size = 95, normalized size = 0.82 \[ \frac {2 \, {\left (46 \, a^{2} \cos \left (d x + c\right )^{3} + 23 \, a^{2} \cos \left (d x + c\right )^{2} + 12 \, a^{2} \cos \left (d x + c\right ) + 3 \, a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{21 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

2/21*(46*a^2*cos(d*x + c)^3 + 23*a^2*cos(d*x + c)^2 + 12*a^2*cos(d*x + c) + 3*a^2)*sqrt((a*cos(d*x + c) + a)/c
os(d*x + c))*sin(d*x + c)/(d*cos(d*x + c)^4 + d*cos(d*x + c)^3)

________________________________________________________________________________________

giac [A]  time = 5.11, size = 151, normalized size = 1.30 \[ -\frac {8 \, {\left (21 \, \sqrt {2} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - {\left (35 \, \sqrt {2} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 4 \, {\left (2 \, \sqrt {2} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 7 \, \sqrt {2} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{21 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{3} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-8/21*(21*sqrt(2)*a^6*sgn(cos(d*x + c)) - (35*sqrt(2)*a^6*sgn(cos(d*x + c)) + 4*(2*sqrt(2)*a^6*sgn(cos(d*x + c
))*tan(1/2*d*x + 1/2*c)^2 - 7*sqrt(2)*a^6*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)^2)*t
an(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)^3*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*d)

________________________________________________________________________________________

maple [A]  time = 0.82, size = 85, normalized size = 0.73 \[ -\frac {2 \left (46 \left (\cos ^{4}\left (d x +c \right )\right )-23 \left (\cos ^{3}\left (d x +c \right )\right )-11 \left (\cos ^{2}\left (d x +c \right )\right )-9 \cos \left (d x +c \right )-3\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, a^{2}}{21 d \sin \left (d x +c \right ) \cos \left (d x +c \right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x)

[Out]

-2/21/d*(46*cos(d*x+c)^4-23*cos(d*x+c)^3-11*cos(d*x+c)^2-9*cos(d*x+c)-3)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)/s
in(d*x+c)/cos(d*x+c)^3*a^2

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [B]  time = 4.58, size = 349, normalized size = 3.01 \[ \frac {\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left (\frac {a^2\,20{}\mathrm {i}}{3\,d}-\frac {a^2\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,4{}\mathrm {i}}{21\,d}\right )}{\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}-\frac {\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left (\frac {a^2\,16{}\mathrm {i}}{7\,d}+\frac {a^2\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,16{}\mathrm {i}}{7\,d}\right )}{\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^3}-\frac {a^2\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,92{}\mathrm {i}}{21\,d\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )}+\frac {a^2\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,48{}\mathrm {i}}{7\,d\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(c + d*x))^(5/2)/cos(c + d*x)^2,x)

[Out]

((a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*((a^2*20i)/(3*d) - (a^2*exp(c*1i + d*x*1i)*4i)/
(21*d)))/((exp(c*1i + d*x*1i) + 1)*(exp(c*2i + d*x*2i) + 1)) - ((a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*
x*1i)/2))^(1/2)*((a^2*16i)/(7*d) + (a^2*exp(c*1i + d*x*1i)*16i)/(7*d)))/((exp(c*1i + d*x*1i) + 1)*(exp(c*2i +
d*x*2i) + 1)^3) - (a^2*exp(c*1i + d*x*1i)*(a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*92i)/(
21*d*(exp(c*1i + d*x*1i) + 1)) + (a^2*exp(c*1i + d*x*1i)*(a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2
))^(1/2)*48i)/(7*d*(exp(c*1i + d*x*1i) + 1)*(exp(c*2i + d*x*2i) + 1)^2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}} \sec ^{2}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(a+a*sec(d*x+c))**(5/2),x)

[Out]

Integral((a*(sec(c + d*x) + 1))**(5/2)*sec(c + d*x)**2, x)

________________________________________________________________________________________